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MASKED FACE RECOGNITION IN REALTIME USING CNN 

 

 

 

 

 

 

 

 

ABSTRACT: Coronavirus has intensely 

impacted the planet and has now infected more 

than 169 million people worldwide. In this 

pandemic situation, wearing a mask and 

following interpersonal distance are two of the 

safety protocols to be followed to avoid the 

escalation of the virus. In this scenario wearing 

masks everywhere was mandatory and becomes 

challenging to identify a person with a mask. So, 

we came up with the idea of "Masked Face 

Recognition" to create a safe environment that 

contributes to public safety. In this paper, we 

propose a reliable method to detect masked faces 

in real-time based on FaceNet, Convolution 

Neural Network, and deep learning techniques in 

python. 
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I. INTRODUCTION 

Nowadays, in many organizations, the 

presence of a person is collected using biometric 

attendance machines [1], which consists of 

fingerprint sensors. A person is made to touch the 

sensors, which leads to the rapid spread of disease. 

Face recognition is a widely used technique[2] in our 

day-to-day life, especially in security surveillance, 

innovative home automation systems, criminal 

investigations, unlocking devices, and intelligent 

attendance systems. Face recognition can be 

implemented using various algorithms in machine 

learning and deep learning. 

 Coronavirus is sweeping the globe now. 

Coronavirus is an unstoppable illness caused by a 

severe respiratory condition [3]  (SARS-CoV-2). 

Coughing, sneezing, touching items, and rubbing 

eyes are all ways for people to become infected. As 

a result, masking and social distancing became 

necessary during the pandemic. A person wearing a 

mask is more difficult to recognize. There are some 

models developed for masked face recognition such 

as integration between classical machine learning 

and deep learning techniques with Keras, 

TensorFlow, and OpenCV by Velantina[4]. Walid 

Harari designed a model based on deep learning and 

occlusion removal-based features[5] and some of 

them worked on Intelligent Face Mask Detection 

System Performance Evaluation using Deep 

Learning classifiers[6]. 

Masked Face Recognition is a technique 

for recognizing a person who is wearing a mask. In 

this model, we have used methods like Convolution 

Neural Network (CNN) and Facenet.  

II. CNN ARCHITECTURE 

CNN is a type of artificial neural network which is 

also named as ConvNet.  To process pixel data and 

recognize an image we use a convolution neural 

network. CNN falls under deep learning which is a 

subset of machine learning. Deep learning uses 

algorithms that are inspired by the function and 

structure of the brain’s neural networks. Deep 

learning makes CNN more potent in image 

processing and artificial intelligence to perform both 

descriptive and generative tasks. Through the 

application of suitable filters, a ConvNet may 

successfully capture the Spatial and Temporal 

dependencies in a picture. CNN is made up of 

several neurons which are spread over various 

hidden layers[7]. A neuron is a mathematical 

function that functions similarly to a biological 

neuron. Here the input data is multiplied with the 

weights and added up to the bias. The weights get 
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updated as they learn from each iteration of the 

training process. These weights are nothing but the 

parameters in between layers.

CNN consists of three layers, namely the input layer, hidden layer, and output layer as shown in Fig 1. There might 

be any number of hidden layers in between the input layer and the output layer. On average, the number of neurons 

present in hidden layers should be two-third of the neurons present in the input layer in addition to the output layer. 

In CNN, the hidden layer consists of the pooling layers, convolution layers, normalization layers, and fully 

connected layers. There are mainly four types of models present in CNN. They are nn4.v1, nn4.v2, nn4.small1. v1, 

nn4.small2. v1. Out of these, we use the variant nn4.small2.v1. The main reason behind opting for this type of model 

is that it considers only the outer eyes and nose part of a face for aligning images, shows better accuracy, less CPU 

and GPU run time even with a fewer number of parameters (3733968) when compared to others[8]. 

Table 1: Performance and accuracy benchmarks of CNN models 

 

 

 

 

 

 

 

 

 

Inception: Here in our model, we have made use of the technique called inception. The main motto of the inception 

layer is to convert a deeper model into a wider model so that some of the processes can be done parallelly as shown 

in Fig 2. Inception is a model in which it consists of 1x1, 3x3, 5x5 convolution filters and the 3x3 max-pooling 

layer in between the previous layer and the next layer. The main motive behind opting for those three convolution 

filters is that the region of interest varies for every input image; we never know how to decide the correct kernel 

size. So, we use all three convolution filters and max-pooling to address the above issue. concatenate all the outputs 

obtained from each filter. We must ensure that we use a 1x1 convolution filter before using 3x3 and 5x5 convolution 

filters to reduce the computation cost. The computation cost of applying a 5x5 filter directly on large input data is 

nearly ten times more than using a 5x5 filter after a 1x1 filter. When we use max pooling, the output obtained from 

MODEL NUMBER OF PARAMETERS RUNTIME(CPU) ACCURACY 

nn4.small 2 3733968 58.9ms + 
15.36ms 
  

0.9292+ 
0.0134 

nn4.small 1 5579520 69.58ms+ 
16.17ms 

0.9210+ 
0.0160 

nn4.v2 6959088 82.74ms+ 
19.96ms 

0.9157+ 
0.0152 

nn4.v1 6959088 75.67ms+ 
19.97ms 

0.7615+ 
0.0189 

Fig 1: CNN ARCHITECTURE 
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this layer is converted to the exact dimensions as input by applying zero paddings, which adds zeroes on all four 

sides of an input matrix and makes sure that the corner values of that input matrix have a fair bit of participation in 

the feature extraction. All the outputs obtained from each filter will be concatenated and sent to the next layer. 

 

 

Convolutional Layer: A convolution layer is nothing but a filter that extracts a specific type of feature from an 

image. Here the feature extraction can be an eye detector, ear detector, or nose detector in case of recognizing a 

person and changes accordingly depending on the purpose we use the neural network. Each neuron in the layer is 

automatically trained to filter for a particular kind of feature. The input given to this layer is convoluted with a 

kernel to get the output which is known as a feature map. The values present in the kernel decides which feature to 

extract. Here we have used the function conv2D, which considers the submatrix in the input of the same size as the 

kernel and performs convolution, which is followed by considering all possible submatrices of the input depending 

on the kernel size and the stride which results in a feature map. 

Pooling: Most of the time, the convolution layer is followed by the pooling layer. Position invariant feature 

detection will be aided by pooling and convolution. As the name says, pooling represents all the values present in 

the window/submatrix with a single value. Here the window size and the strides are represented in the input function 

of this layer. This layer is primarily used to minimize the complexity, number of calculations and decrease 

overfitting due to the fewer parameters, tolerance to fluctuations, and distortions. The two types of pooling 

procedures that are most employed are maximum pooling and average pooling. The maximum value of all the values 

present in the filter is considered in max pooling. In contrast, the average value of all the values currently in the 

filter is considered in average pooling. When opposed to average pooling, max pooling is more commonly utilized 

since it finds the maximum values by discarding other matters, which leads to the elimination of disturbances. 

Normalization: The term "normalization" refers to the process of converting input data to a range between 0 and 1 

with a mean of 0 and a standard deviation of 1. This technique is mainly helpful in cases where we have a wide 

range of input values. Generally, we use this functionality after passing through the activation function. An 

activation function defines a neuron’s output given a set of inputs after calculating the weighted sum by a nonlinear 

transformation. The runtime can be decreased by using the normalization function at the end of each layer. So, that 

it allows faster learning. 

Fully Connected Layer: At last, after passing through all the convolution layers, pooling layers, normalization 

layers present in the model, the output obtained is flattened and is given as input to the fully connected layer. The 

purpose of flattening is to convert an n-dimensional array into a 1-D array. The purpose of the fully connected layer 

is to predict the output from all possible outcomes. So that the learning of nonlinear combinations of these features 

can be done cheaply. Each neuron that is present in the preceding layer is connected to the fully connected layer as 

inputs. On the other hand, this layer is linked to all of the model's possible outputs. 

III.FACE NET 

Face Net learns from an embedding function about two images are similar to each other. An embedding in 

mathematics is one instance of a mathematical structure enclosed within another instance, such as a subgroup of 

Fig 2: Inception layer 
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a group. Here x is an input image or an input face image. So, from this face image this FaceNet[9] learns an 

embedding function f(x) with the constant that ||f(x)||2 =1, that is for normalization purposes. In other words, we 

can write that the Face Net learns a function f, which maps your input face image x; of course, here we assume 

that this input face image x is of size MxN; so MxN number of pixels. So, it learns a mapping or learns an 

embedding of an input face as x to Rd, d dimensional feature vector. So, it maps x, which belongs to RMxN, to Rd, 

and if d < MxN, then what we are gaining is an image of size MxN being represented or embedded, which is 

known as embedding. It is being embedded into a d dimensional space. This embedding function, which is f that 

embeds an input image to a d dimensional vector or represents that input image embeds it in this input image to 

our d dimensional space as a vector, is not handcrafted. But the machine or the deep neural network has to learn 

this embedding function f; by using the training data made available to the system. When we transform an image 

into a vector, in a d dimensional vector, it represents that image by a point in a d dimensional space, and the same 

thing is done over here. If we take two images, say xi and xj , both of them are embedded in that d dimensional 

space and maybe in Euclidean space through this embedding function f. So, f(x i) is embedding image xi, and f(xj) 

is embedding image xj . So, ||f(xi)-f(xj)||2  This indicates the squared Euclidean distance between these two 

embeddings f(xi) and f(xj). 

Triplet Loss:  For training this network, what we need to define is a loss function. So, the loss function described 

in this Face Net is known as a triplet loss[10]. The triplet loss function makes use of three images that is the 

negative image(N), positive image(P), anchor image(A), and their respective embeddings are f(N), f(P), f(A). A 

positive image is an image of the same person present in the anchor image, whereas a negative image is quite 

opposite of a positive image. The distance between the negative image and the anchor image should exceed the 

distance between the positive image and the anchor image as shown in Fig 3. 

||f(xa)-f(xp)||22<||f(xa)-f(xn)||22 

If f (xa) - f (x p)  equals zero, then the above condition is always actual, which means there will be no further 

learning as there will be no triplet loss function. So, the model stops learning. The above equation can be modified 

such that the distance between these two must differ at least by alpha. And that leads to a loss function, which is 

given by this that  N∑i=1[||f(xa)-f(xp)||22-||f(xa)-f(xn)||22    Face Net tries to make compact clusters of the images 

belonging to the same person. The distance between every such pair should be small. 

 

                                 

Fig 3: Triplet Loss 

Triplet Selection: If we have a database of a vast number of images, selecting all possible triplets becomes 

exceedingly difficult. So, we form the mini-batches and select the triplets within the mini-batches. We should find 

out the pair of tricky positive triplets or a positive triplet whose distance is considerable, and a negative triplet 

whose distance from the anchor is small. These are the pairs that give you faster learning of this network. Instead 

of finding out the most challenging negative sample, we need to find a semi-hard adverse selection that satisfies 

the distance between the negative and the anchor sample exceeds the distance between the positive and the anchor 

sample.  

The samples which are semi-hard negative samples may not be complex negative samples because the selection 

of those may be more straightforward. So, once you have all this and your network is trained. Then, the output 

becomes a vector embedding your input image to our d dimensional space for any input image. 
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IV. PROPOSED WORK 

Pre-Processing: In pre-processing, we first need to collect the images of all the persons to be detected using our 

model and place them in a folder with the person folder name. It is better to give more images  

 

Fig 4: Flow 

of each person to get an efficient output. Collect the images of a person with his face masked or unmasked as 

shown in Fig 6. Unmasked images can be masked using an imaginary mask[11] by taking all the images present 

in our dataset and make sure that it paste a picture of a mask to every image by considering the nose bridge and 

chin bottom of a face. We will get a folder where all the images present in our dataset will have masks on their 

face, and we call this process generating a dataset. Now we need to take all the photos generated above and align 

them so that the images are cropped into the size 96x96 by selecting only the frontal part of our face using the hog 

detector[12] as shown in Fig 7. This hog detector is used to detect these features using Dlib algorithms by 

surrounding each feature with a map of points as shown in Fig 5 which is composed of 68 points also known as 

landmark points. Every image is aligned so that all the 68 landmarks[13] of every painting are present one above 

the other. Here the hog detector makes sure that every image in the generated dataset contains the person's face. 

If there is no face detected, it will discard that image from the generated dataset. 

 

Fig 5: 68 Facial Landmarks 

Initialization: We need to initialize our model by calling the function in which we have given all the connections 

that were made in the model. Now we will initialize all the neurons present in our model with predefined weights 

which are useful for human facial features extraction. Weights define the importance of all these features in 

deciding the final output. 

Training: Here, a list of all the images present in the dataset is created and assigned labels to every image. 

DATASET

PRE-PROCESSING

TRAINING

ANALYZING

TESTING
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The embedding vector[14] of all the images present in the dataset is to be calculated. For this to happen, it will 

take all the photos from the dataset and align them as mentioned in the pre-processing stage and normalize all the 

RGB values obtained and send them for prediction. The predicted value is obtained as a 128-dimensional 

embedding vector when we send the normalized RGB values as input to the model created. Embedding vector is 

a point in the 128-dimensional plane, and all the vectors of a particular person will be in the form of a cluster. All 

these embedding vectors generated will be concatenated into an array and will be saved in a file. 

 

Analyzing: The process of analyzing is done to find a preferable threshold value. Here we will discover the 

euclidean distance between all possible combinations of the two embedding vectors of a particular individual 

using the equation shown below. This cycle is rehashed for every one of the people present in the dataset. The 

Euclidean distance of an image obtained from each case is appended into a list named match_distances. 

 

𝐷𝑖𝑗
2 =∑

𝑛

𝑣=1

(𝑋𝑣𝑖 − 𝑋𝑣𝑗)
2 

 

In the same way, we will find out the Euclidean distance between the embedding vectors of two different 

individuals in a random way. Here we can indicate quite a few combinations, and the output distance obtained in 

each case is appended into a list named unmatched_distances. When a graph is plotted for both matched and 

unmatched distances, as shown in Fig 8, we can depict the tradeoff value for the threshold so that most of the 

values present in matched_distances should be present on the left side of the threshold value we have chosen. 

 

Fig 6: Dataset 

Fig 7: Image before and after pre-processing 
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                                                     Fig 8: Plot for matched and unmatched distances 

 

Testing: As we all know, when we run a sequence of images or frames, it results in a video. The image captured 

from each frame detects the number of faces present in it and crops them so that all the faces that are seen at run 

time should be of size 96x96 by only considering the frontal part of a face. Images are aligned one over the other, 

so all the 68 landmarks are at the same position, quite similar to the process done in pre-processing. Now, these 

aligned images are converted into the RGB values of each pixel and normalize those values. These normalized 

RGB values are sent as input to the model and result in a 128-dimensional embedding vector. This vector obtained 

at run time will find the euclidean distance with each image present in our dataset and get appended to the list. 

The minimum value of all the current weights in the list is compared to the threshold value found earlier. If the 

minimum value obtained is less than the threshold value, it will mention that person with which we got the 

minimum value as shown in Fig 8. But if the minimum value exceeds the threshold value, then it will show the 

person captured at run time at that frame as unknown. This process continues for every frame until we stop 

executing it. 

 

V. EXPERIMENTAL RESULTS & ANALYSIS 

 

The accuracy of the proposed model is mainly calculated using images that are not trained in the training part and 

given as inputs for the model for calculating the accuracy—the two scenarios needed to be considered for accurate 

calculations. The first scenario will be viewing the photos of the person without a mask. The second scenario will 

be considering the images of the person with and without a mask. With the consideration of the above methods, 

the accuracies obtained are  

 

 

SCENARIO ACCURACY 

Scenario 1 87% 

Scenario 2 84% 

 

Here, an SVM classifier is used to calculate the accuracy of the model. In SVM, a hyperplane is a plane in n-

dimensional space that tries to separate different classification groups. The rate of similarity(confidence score) for 

each sample is calculated by considering the proportional relation to the signed distance of the same sample to the 

hyperplane. Using the confidence score obtained the class labels are predicted. The accuracy required is calculated 

by dividing the total number of correctly predicted samples by the total number of samples. 

Table 2 : Accuracy rates 
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The outcomes may be varied when we test it with the webcam feed or any other cam feed. Our experimental 

results are accurate when the person is nearer the camera. The face should be visible clearly without any shadow 

or dullness present in the feed (An adequate amount of light should be present in the area to better capture the 

image). 

 

 

VI. CONCLUSION 

Face recognition gets a challenging task in this pandemic. We also know that recognizing a person's face is 

challenging since current facial recognition technologies will almost likely fail to make an accurate identification 

while wearing a mask. As a result, we proposed CNN-based "Masked Face Recognition" to detect a masked 

person's face. Using the above-proposed model of CNN, we can recognize a person wearing a mask with 

reasonable accuracy. 
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