
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 9, Issue 5, Oct-Nov 2021
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 78

Designing of Deterministic Finite Automata for a Given Regular Language

with Substring

Rashandeep Singh1, Nishtha Kapoor2 and Dr. Amit Chhabra3

Chandigarh College of Engineering and Technology, Chandigarh,

rashandeepsingh@gmail.com1, nishthak36@gmail.com2 and amitchhabra@ccet.ac.in3

ABSTRACT

Theory of computation deals with the computation logic in relation to the automata and is an important branch of

computer science. There are various formal languages such as regular languages, context-sensitive languages,

context-free languages, and so on that can be recognized by different automata. Regular language is recognized

by finite automata. Finite automata recognize the symbols as an input and change its state accordingly. A finite

automaton can be deterministic or non-deterministic in nature. Deterministic finite automata are used in the first

and foremost important phase of compiler design i.e. lexical analysis. Different tokens are recognized by different

final states of a DFA. It is a difficult and time consuming task to construct a DFA as there is no fixed approach

for creating DFAs and handling string acceptance or rejection validations. The objective of this paper is to propose

and implement an algorithm for construction of deterministic finite automata for a Regular Language with the

given Substring. The output of this algorithm will be a transition table. The proposed method further aims to

simplify the lexical analysis process of compiler design.

Keyword: Regular Language, Deterministic Finite Automata (DFA), Substring, Transition table

1. INTRODUCTION

A language is a collection of strings, each of which is picked from a set of ∑*,

where ∑ is a set of alphabet and ∑* is set of all strings over a given alphabet [4].

An example of the alphabet (∑), strings (∑*) and language (L) is given in Figure 1.

Figure 1: An example of the alphabet (∑), strings (∑*) and language (L)

Therefore we can say that Language is the set of operations over an alphabet (L ⊆ of ∑*). Formal language is

defined as a set of specific strings over a given alphabet in accordance with some rules known as grammar. Any

formal language can be represented using a finite state machine [9]. At a given instant of time, a finite state

machine can be in only one state and the input system results in a transition from current state to next state [17].

Formal Languages are further classified in form of Chomsky hierarchy [1] as given below in Table 1:

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 9, Issue 5, Oct-Nov 2021
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 79

Table 1: Chomsky Hierarchy

Every type of language i is i-1 also. Regular Languages, as shown in the table, are the most restricted sorts of

languages [3]. The most efficient approach to describe regular language in the form of mathematical expression

is through regular expressions [4]. Further, the regular languages can be recognized using finite automata which

can be deterministic or non-deterministic. In deterministic finite automata, for each state and input symbol there

is exactly one transition [6] [17]. However, there can be zero, one or more transitions for each state and input

symbol in case of non-deterministic finite automata. DFA are also used for string recognition i.e. to check whether

a string is accepted by a given DFA or not. If by the end of the input string, if the current position is the final state

then the string is accepted otherwise it gets rejected [15].

DFA ending with suffix, DFA beginning with prefix, DFA having a substring, DFA containing exactly, at least,

or at most number of occurrences of symbol are only a few of the major forms of DFA. The aim of this paper is

to implement an algorithm for creating DFAs having a substring.

The paper is further organized as follows. Next section and its subsection describe deterministic finite automata

and DFA with substring respectively in detail. Section 3 provides an insight on applications of DFA. Section 4

discusses problem formulation. The detailed algorithm for design of DFA for formal language given as substring

is proposed in Section 5. It's corresponding illustration is given in section 6. Finally, conclusion and future scope

are presented.

2. DETERMINISTIC FINITE AUTOMATA

The term deterministic refers to the fact that the automaton can only transition to one state from its present state

on each input [16]. Deterministic finite automata are defined as those Finite automata that have a transition for

every symbol in the input alphabet [2].The null move is not accepted by DFA, which means it cannot change state

without any input character.

A DFA can be defined as 5 tuples [8]:

M= (Q, ∑, δ, q0, F or A)

Where,

Q: A finite set of states

∑: A finite set of the input symbols

q0: Initial state

F: A set of final or accepting state

δ: Q x ∑→Q Transition function

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 9, Issue 5, Oct-Nov 2021
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 80

It's difficult to read a dfa as a five-tuple with a thorough description of the transition function. For describing

automata, there are two standard notations.

● A transition table

● A transition diagram

In a transition table transition function is represented in a tabular form. Each row in the transition table will

represent a DFA state, and each column will represent an input symbol. Arrow is pointed to the initial state

whereas final states are encircled. Cell[i][j] will store the state where transition at state i will take place when

input j is provided.

A transition diagram also called “State Transition Diagram” is a directed graph in which the vertices represent

states and the edges represent transitions [7]. A double circle denotes nodes that correspond to accepted states and

a single circle represents the rest of the states. There is always an arrow into the start state that is not from any

other state. Each transition in the transition diagram is represented by an arrow or an edge with the input symbol

written over it..

As shown in Figure 2, q0, q1, q2, and q3 represent states in a graph. The arrow pointed to q0 represents the start

state from where transitions begin, while the encircled q3 denotes the final state. If after string processing we are

at the final state then the string is accepted otherwise rejected. {a, b} represents the transition symbols through

which we can go from one state to another.

Figure 2: An Example Transition Diagram/Graph

Transition table of the corresponding transition diagram is shown in Table 2. Transition function (δ) requires 2

arguments - current state and input symbols and produces the output of the state [5]. The entry for one row

corresponding to state q and the column corresponding to input a is the state δ(q, a).

Table 2: Transition table

Here Q = {q0, q1, q2, q3}, ∑ = {a, b} and F = {q3}

 M = ({q0, q1, q2, q3}, {a, b}, δ, q0, {q3})

The first column in the table above lists all of the current states. It’s transitions on input symbols ‘a’ and ‘b’ are

displayed in columns a and b.

● When the current state is q0, its transition on input symbol ‘a’ is q2, and on ‘b’ is q1, according to the first

row of the transition table.

δ(q0, a) = q2 δ(q0, b) = q1

● When the current state is q1, its transition on input symbol ‘a’ is q1, and on ‘b’ is q1, according to the first

row of the transition table.

δ(q1, a) = q1 δ(q1, b) = q1

● When the current state is q2, its transition on input symbol ‘a’ is q2, and on ‘b’ is q3, according to the

third row of the transition table.

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 9, Issue 5, Oct-Nov 2021
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 81

δ(q2, a) = q2 δ(q2, b) = q3

● When the current state is q3, its transition on input symbol ‘a’ is q2, and on ‘b’ is q3, according to the last

row of the transition table.

δ(q3, a) = q3 δ(q3, b) = q3

2.1 DFA WITH SUBSTRING

A DFA with a given substring is described as a string consisting of substring symbols of a regular language.

Example, a DFA over Σ = {a, b} which recognizes strings having substring ‘ab’ is shown in Figure 3.

Figure 3: State/Transition table for strings having substring ‘ab’

The string ‘aabbb’ (as it contains substring ‘ab’) will be recognized by the DFA because starting from the initial

state q0 and after processing; the string is in final state q2. Whereas the string ‘bbbaa’ (as it does not contain

substring ‘ab’) will not be recognized by the DFA as after processing, the string is in state q1 which is not a final

state.

3. APPLICATIONS OF DFA

DFA has extreme importance in many applications such as:

● Token recognition: The lexical analyzer’s primary role is to scan the program written one character at a

time and generate the corresponding token [10]. Different tokens are recognized by different final states

of a DFA.

● Text Parser: Text processors or text filters utilize DFA-like code to scan a text file for strings that match

a given pattern [11].

● Vending Machines: DFA can also be used in vending machines, where the value of coins acts as the

machine's state, and only a specific combination of coins causes the selected item to be dispensed [13].

● Speech Processing: The DFA approach is frequently used in speech processing and other signal

processing systems to convert an input signal [12].

● Pattern Matching: DFA is a machine or a simple language recognition device that recognizes the given

input strings. Minimized DFA is more useful because it minimizes the amount of memory space required

[14] [15].

● Video games: in games like Pac man there are 4 states like Wander the Maze, Chase Pac-Man, Return to

Base, Flee Pac-Man [13]. Thus the DFA approach is used in such video games.

Despite so many applications, learners face difficulty in designing a DFA due to the requirement of a high level

of understanding [7]. There is no availability of well defined algorithm for the generation of transition table for

the given strings. The need for a well-defined algorithm is discussed in the next section.

4. PROBLEM FORMULATION

DFA is of extreme importance in many applications including lexical analysis of compiler, text parsing, natural

language processing, CPU control units and many more. However it is a difficult task to construct a DFA as there

is no fixed approach for its construction. Beginners lack high level understanding so they face difficulty in creating

a DFA for a given regular language with substring. Therefore there is a need for an algorithm which can help in

construction of a DFA and give a transition table as the output. In the next section an algorithm is proposed which

will help in designing the DFA with the help of a given substring in an easy and timely manner. The proposed

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 9, Issue 5, Oct-Nov 2021
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 82

algorithm will provide a transition table and transition graph which together as a whole provides a great insight

to understand and implement computation models easily. This algorithm has no restrictions on the type of input

symbols, as well as the length of the provided substring. Because the approach is not language-specific but rather

universal in nature, it can be used to create DFA in any programming language.

5. PROPOSED ALGORITHM FOR THE DESIGN OF DFA FOR A GIVEN REGULAR LANGUAGE

WITH SUBSTRING

The algorithm for construction of transition table for deterministic finite automata with given substring is

described in Figure 4.

Figure 4: Algorithm for Substring

The flowchart for the same is shown in Figure 5.

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 9, Issue 5, Oct-Nov 2021
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 83

Figure 5: Flowchart for Algorithm for Substring

6. RESULTS AND DISCUSSIONS

An example of designing a transition table for DFA over Σ = {a, b} which recognizes strings having substring

‘ab’

No. of states = length of string + 1

q0 = initial state

q1 = strings starting with a (a of given string ‘a’b)

q2 = strings starting with ab (final/ given string)

The initial template for the state/transition table for strings having substring ‘ab’ is shown in Table 3.

Table 3: Initial Template for State/Transition table for strings having Substring ‘ab’

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 9, Issue 5, Oct-Nov 2021
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 84

Steps to fill the table:

Step 1: For state q0:

δ(q0,a) = q1 // q1 accepts the string a

δ(q0,b) =q0 // there is no state accepting b, so q0

Step 2: For state q1:

// combining the string of q1 with input symbol ‘a’

δ(q1,aa) =not found in acceptance of any state // no state accepts string aa

// δ(q1, a a) - now we will go for δ(q1,a)

δ(q1,a) = q1 // q1 accepts the string a

// combining the string of q1 with input symbol ‘b’

δ(q1,ab) = q2 //q2 accepts the string ab

Step 3: For state q2:

// for final state, resultant is state itself

δ(q2,a) = q2

δ(q2,b) = q2

The final transition table as constructed by using steps of the algorithm is shown in Table 4.

Table 4: State/Transition table for strings having substring ‘ab’

From the table, the corresponding transition/state diagram as shown in Figure 3 can be constructed easily.

7. CONCLUSION AND FUTURE SCOPE

Theory of computation helps define infinite languages in finite ways, create algorithms for related problems, and

determine if a string is in language or not. Designing an automaton is an important part of automata theory. The

present paper proposes and implements an algorithm for designing a DFA with a given regular language as

substring, which takes language as input and outputs a transition table, by using this transition table we can create

a transition diagram. Therefore with the help of this algorithm new learners can make a DFA easily. An example

is used to demonstrate the algorithm. Furthermore, the algorithm only considers DFA with a substring as a unique

case. In future a more generalized algorithm could be created so that it can cover all possible cases using which

DFA could be constructed.

http://www.ijreat.org/
http://www.prdg.org/

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 9, Issue 5, Oct-Nov 2021
ISSN: 2320 – 8791 (Impact Factor: 2.317)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 85

REFERENCE

[1] Hopcroft, J. E., Motwani R., Ullman J.D. (2008), “Introduction to Automata Theory, Languages and

Computation”, 3rd Edition, Pearson Education, India.

[2] Introduction-To-The-Theory-Of-Computation-Michael-Sipser 2nd edition 2006

[3] Martin J.C. (2007), “Introduction to languages and theory of computation”, Tata McGraw Hill.

[4] Deterministic finite automata [online] available at https://www.geeksforgeeks.org/theory-of-computation-

automata-tutorials/ accessed on 2nd June 2021

[5] Zhang, K., Wang, Q., & Giles, C. L. (2020). Adversarial Models for Deterministic Finite Automata. In C.

Goutte, & X. Zhu (Eds.), Advances in Artificial Intelligence - 33rd Canadian Conference on Artificial Intelligence,

Canadian AI 2020, Proceedings (pp. 540-552). (Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 12109 LNAI).Springer.

https://doi.org/10.1007/978-3-030-47358- 7_55

[6] Ather, D., Singh, R., & Katiyar, V. (2013). An algorithm to design finite automata that accept strings over

input symbol a and b having exactly x number of a y number of b. International Conference on Information

Systems and Computer Networks, IEEE, pages 1–4,DOI: 10.1109/ICISCON.2013.6524162

[7] Shenoy V., Aparanji U., Sripradha K. & Kumar V. (2013). Generating DFA Construction Problems

Automatically. International Journal of Computer Trends and Technology, Vol. 4, Issue 4, pp.32-37

[8] K.Senthil Kumar and D.Malathi (March-2015), “A Novel Method To Construct Deterministic Finite Automata

From A Given Regular Grammar”, International Journal of Scientific & Engineering Research, Volume 6, Issue

3, 106 ISSN 2229-5518.

[9] Liu D, Huang Z, Zhang Y, Guo X, Su S (2016), “Efficient Deterministic Finite Automata Minimization Based

on Backward Depth Information”, PLoS ONE 11(11): e0165864, https://doi.org/10.1371/journal.pone.0165864

[10] Rajanshu Goyal1 and Gulshan Goyal, “Design and Implementation of Transition Table for Token Recognizer

with a Given Suffix”, International Journal of Computer Sciences and Engineering, Vol.-7, Issue-5, May 2019,

E-ISSN: 2347-2693

[11] Webber A. B., “Formal Language: A Practical Introduction”, Franklin, Beedle & Associates Inc.,

Wilsonville, pp. 35-43, 2008.

[12] Ullman, J. D. (1972), "Applications of language Theory to Compiler Design", Proceedings of the May 16-

18, 1972, spring joint computer conference, pp. 235-242, 1972.

[13] Gribko E. “Applications of Deterministic Finite Automata” ECS 120 UC Davis, Spring 2013, pp. 1-9, 2013.

[14] BabuKaruppiah A., Rajaram S., “Deterministic Finite Automata for pattern matching in FPGA for intrusion

detection” International Conference on Computer, Communication and Electrical Technology, pp. 167-170, 2011

[15] Ejendibia P., Baridam B. B., “String Searching with DFA-based Algorithm”, International Journal of Applied

Information Systems, Vol. 9, No. 8, pp. 1-6, 2015

[16]Murugesan N, & Samyukthavarthini B (2013) A Study on Various types of Automata

[17] O’Regan G. (2020) “Automata Theory. In: Mathematics in Computing”, Undergraduate Topics in Computer

Science, Springer, Cham.

http://www.ijreat.org/
http://www.prdg.org/
https://doi.org/10.1371/journal.pone.0165864

